An apodized Kepler periodogram for separating planetary and stellar activity signals
نویسنده
چکیده
A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and centre can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for m AK signals includes a linear regression term between RV and the SA diagnostic log (R'hk), as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion Markov chain Monte Carlo code. A differential version of the generalized Lomb-Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state-of-the-art simulated data sets supported by a variety of SA diagnostics. In the current implementation, the AK method achieved a reduction in SA noise by a factor of approximately 6. Final parameter estimates for the planetary candidates are derived from fits that include AK signals to model the SA components and simple Keplerians to model the planetary candidates. Preliminary results are also reported for AK models augmented by a moving average component that allows for correlations in the residuals.
منابع مشابه
Photometric Orbits of Extrasolar Planets
We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily,...
متن کاملBayesian detection of planetary transits
The detection of planetary transits in stellar photometric light-curves is poised to become the main method for finding substantial numbers of terrestrial planets. The French-European mission COROT (foreseen for launch in 2005) will perform the first search on a limited number of stars, and larger missions Eddington (from ESA) and Kepler (from NASA) are planned for launch in 2007. Transit signa...
متن کاملExoplanet Characterization by Proxy: A Transiting 2.15 R⊕ Planet Near the Habitable Zone of the Late
We present the validation and characterization of Kepler-61b: a 2.15 R⊕ planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with a set of spectroscopically similar stars with directly measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in t...
متن کاملSearching for exoplanets in the Kepler public data
NASA’s Kepler mission to search for extrasolar planets has collected data from hundreds of thousands of star systems, and has discovered nearly 1000 confirmed exoplanets to date in addition to over 3000 unconfirmed candidates. The mission detects exoplanets using transit photometry, which detects the transit of a planet in front of a star as transient drops in stellar intensity. Raw data is col...
متن کاملExoplanet Characterization by Proxy: a Transiting 2.15 R⊕ Planet near the Habitable Zone of the Late K Dwarf Kepler-61
We present the validation and characterization of Kepler-61b: a 2.15 R⊕ planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with the set of spectroscopically similar stars with directly-measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in...
متن کامل